
    

 

PREDICTION OF THE HEAT TRANSFER RATE OF A FIN AND TUBE HEAT 

EXCHANGER – USING ARTIFICIAL NEURAL NETWORK TRAINED AND TESTED 

WITH EXPERIMENTAL DATA 

 

 
Sahin F.*, Bacak A., Okbaz A., Onbasioglu H. 

*Author for correspondence 

Research and Development Department, 

Friterm Thermal Devices Co., 

Tuzla, Istanbul, 

Turkey 

E-mail: feyzacebi@friterm.com 

 

 
ABSTRACT 

 

Heat exchangers are devices that are widely used to 

transfer heat between fluids because of their temperature 

differences. The logarithmic mean temperature difference 

(LMTD) and effectiveness-number of transfer units (ε-NTU) 

methods are the commonly used methods of heat exchanger 

performance prediction and  analysis. Besides these methods, in 

the recent decades Artificial Neural Networks (ANNs) have 

become a powerful tool used for thermal analysis and 

performance prediction of heat exchangers. Experimental 

studies for complex devices like multi-row, multi-column heat 

exchangers are time consuming, costly and not applicable for 

large scale devices. Thus, the prediction of target data like heat 

rate with an acceptable error percentage is gaining importance.  

This study presents an application of artificial neural networks 

to predict the heat transfer rate of a fin and tube heat exchanger 

with air and water as the working fluids. Experimental data are 

used to train and test the network. It is also studied how the 

different number of hidden layers and different number of 

nodes in each layer of the Multilayer Perceptron (MLP) – a 

feedforward artificial neural network model- affects the 

accuracy of the heat transfer rate prediction. Thus, an optimized 

ANN is being suggested for water-air finned tube heat 

exchangers as a better predicting tool. 

 

INTRODUCTION 
 

For the last two decades, artificial neural networks (ANN) have 

been used in many engineering fields as well as in many other 

areas. Heating, cooling and air conditioning is also an industry 

that is benefiting from the artificial neural networks. 

Performance tests of heat exchangers are required to test the 

accuracy of the mathematical models for the calculation of the 

heat exchanger capacity. In some cases, these tests can be 

limited to parameters such as capacity, size and problems such 

as being costly or time consuming are encountered. Therefore, 

the use of artificial neural networks in the field of heat 

exchanger performance estimation provides many benefits. Due 

to their better and reasonable results, artificial neural networks 

are preferred over traditional methods for the prediction of the 

heat transfer rates. Studies in this area have helped to develop 

new models to ensure more accurate and converged results.  

 

 An example for the engineering field study of ANN is done by  

Singh et al. [1] studied on an ANN model for the prediction of 

the specific heat capacity of working fluid LiBr-H2O used in 

vapor absorption refrigeration systems. A feed forward back 

propagation algorithm is used for the ANN model and the 

results of ANN model and experimental study was achieved by 

a mean relative error (MRE) 0.00573.  Nasr et al. [2] applied 

four different ANN model for gasoline consumption 

respectively to past consumption values, to gasoline 

consumption time series and price, to gasoline consumption and 

car registration and finally to combine gasoline consumption, 

price and car registration. First one is univariate, and the others 

are multivariate model. Results showed that the multivariate 

models achieved reasonable errors than the univariate model. 

Datta et al. [3] studied on a Bayesian regulated ANN to model 

the erosion behavior of Ni base alloys. Two different scenarios; 

a simple equation-based model and a comprehensive dataset 

looking at erosion as a function of particle size, velocity, impact 

angle and temperature have been used and the results showed 

that the Bayesian regularization algorithm gave much more 

successful accuracies averaging better than 90% respect to 

traditional algorithms of multilayer perceptron ANN.   

NOMENCLATURE 
 
D [mm] Tube diameter 

A [m2] Heat transfer surface area 
tf [mm] Fin thickness 

NC [-] Number of circuits 
L [mm] Tube/ finned length 

Va [m3/h] Air side volumetric flow rate  

VF [m3/h] Fluid side volumetric flow rate 

Tai [C°] Air inlet temperature 

Tfi [C°] Fluid inlet temperature 
Q [kW] Heat transfer rate  

 

Subscripts 
   

a  Air side 
ai  Air inlet  

fi  Fluid inlet 

F  Fluid side 
f  Fin 

   



    

Also some studies are listed for the application of ANN to the 

studies related with the heat exchangers; Yiğit et al. [4] applied 

ANN to predict the air temperature and humidity at the outlet 

temperature of a cooling coil. 9 different coil test parameters 

were measured and two of them were the prediction parameters 

for ANN model. As the backpropagation algorithm ANN model 

trained with the test data, results were good as an error less than 

1% and 2% respectively for coil outlet temperature and 

humidity. Islamoglu et al. [5] applied ANN to analyses heat 

transfer for air flowing in corrugated channels. With the help of 

the experimental data to train and test the ANN, results were 

achieved with an MRE less than 4%. Also another study of 

Islamoglu [6] was for a wire-on-tube type heat exchanger heat 

transfer rate prediction with an ANN trained with the 

experimental data of another study. Twelve different inputs of 

19 test results was given to backpropagation ANN model for 

training and then to predict the heat transfer rate as output. 5 of 

the test results were predicted and results were achieved with 

1.30% (training) and 4% (test) MRE. Diaz et al. [7] applied 

ANN to heat transfer prediction for one-dimensional 

conduction, then to predict the heat transfer for the convection 

with one and two heat transfer coefficient.  This study gives the 

best configuration for the ANN model of the heat exchanger 

heat transfer coefficient. Pacheco-Vega et al [8] study on an 

ANN to a fin-tube heat exchanger with a number of limited 

experimental test data to predict the heat rate. Results showed 

that the accuracy of the estimation error is dependent on the 

number of the data that is given to the ANN as the training data. 

All the literature researches show that ANN technology is a 

valid method for heat transfer predictions.   And this study 

contributes to ANN studies with the combined analysis of the 

network model.  

EXPERIMENTAL DATA 
 

The heat exchangers used for this study are provided by the 

manufacturer Friterm Inc. and experimentally tested in the 

laboratory site of Friterm. Tested fin and tube type heat 

exchangers are schematically shown in Fig. 1.  Heat transfer is 

gained by the temperature difference of two fluids. First one is 

the air that flows outside the tubes and fins, whereas the second 

fluid water flows inside the tubes. Fin and tube type heat 

exchangers are commonly used in refrigeration applications.  

 
 

Figure 1. Heat exchanger coil 

The heat exchangers at the first test group had nominal sizes; 

715 mm length and two different height 576 mm and 684 mm. 

These sizes were compatible with the size of test chamber. First 

test group consists of 3 different heat exchangers. Two of them 

are with the same tube alignment configuration; number of 

tubes in row and in column differs from each other with the 

size of the tube diameter and fin thickness, tested for 6 different 

air inlet volumetric flows. The other one with a different tube 

alignment configuration but identical with other two heat 

exchangers for the fin thickness and tube diameter size is also 

tested for the same six air inlet volumetric flow. Tests are done 

with the same fluid side volumetric flow rate and air side-fluid 

side inlet temperatures. For three types of coil, number of 

circuits was kept unaltered.  

Bare coils are tested by the help of the switchboard module 

installed in the air conditioning chamber. The schematic 

drawing of the test chamber which is used for testing the coils 

is given in the Figure 2. 

 

 

Figure 2. Experimental Test Room 

Tests are done according to the measurements of the inlet 

and outlet properties for the inside and outside fluids; water and 

air, respectively.  Air enthalpy method was used to evaluate 

heat transfer rates of the coils. The air enthalpy method 

(psychrometric method) measures capacity by accurately 

measuring the psychrometric air properties at the inlet and 

outlet of the bare coil. The air conditioning chamber maintains 

proper indoor and outdoor test conditions. Typically, this 

method requires to measure dry bulb temperature, wet bulb 

temperature/, relative humidity/, dew point temperature, 

barometric pressure, pressure drops both in the inlet and outlet. 

An airflow measuring device (3) is attached to the air discharge 

equipment. This device discharges air directly into the test 

room AHU or space, which is provided with suitable means for 

maintaining the air entering the unit at the desired dew point 

and dry-bulb temperatures. The experimental setup and 

procedure are explained in more detail in study of Okbaz et 

al.[9]. 

 

 

ARTIFICIAL NEURAL NETWORK STRUCTURE  

Artificial neural networks are computational methods for the 

information processing. The inspiration is come from the 

biological brain neuron system. It consists of a large number of 

highly interconnected processing elements called as neurons 

Piuri et al. [10]. When there is not a clear relationship between 

the inputs and outputs, it is not easy to formulate the 



    

mathematical model for such systems. Or even a mathematical 

model can be built, to prove the accuracy of the mathematical 

model, some tests must be done. If there is a limitation for the 

test conditions, then there must be another way to prove the 

model. Besides, experimental studies for complex devices like 

multi-row, multi-column heat exchangers are time consuming, 

costly and not applicable for large scale devices.  Even if the 

working principle of finned tube heat exchangers is quite 

simple, it is difficult to perform performance analysis due to the 

large number of parameters affecting heat transfer. Therefore, 

artificial neural networks (ANNs) have been considered as a 

powerful tool used for thermal analysis of heat exchangers. 

Among the various kinds of ANNs that exist, the feedforward 

configuration has become the most popular in engineering 

applications [8] Multilayer Perceptron, or MLPs for short, are 

the classical type of feed forward artificial neural network, 

which is used in this study. They are comprising one or more 

layers of neurons. A typical feed forward structure is 

schematically given in Fig. 3. This model has one input layer, 

one hidden layer and one output layer. The model is called 

feedforward because the data is fed to the input nodes at the 

input layer and the information is transferred through the 

network to the nodes at the output layer.  There may be one or 

more hidden layers and predictions are made on the output 

layer, also called the visible layer. The nodes perform non- 

linear input-output transformations by means of sigmoid 

activation function. The mathematical background, the 

procedures for training and testing the ANNs, and account of its 

history can be found in the book of S. Haykin [11] 

 

 

Figure 3. Artificial Neural Network Model 

To train and test the neural networks, input data set is divided 

into two sets. First part is used for training the ANN (generally 

75- 80 % of total) while the remaining part (generally 25- 20 

%) is used for testing the network to evaluate the accuracy of 

the results by neural network.  

In this study, an open source program KNIME is used to 

optimize an ANN model for the prediction of heat transfer rate. 

The inputs were total heat transfer surface area (A), tube 

diameter (D), fin thickness (tf), number of circuits (NC), length 

of finned tube (L), air side volumetric flow rate (Va ), fluid side 

volumetric flow rate (VF ), air inlet temperature (Tai),  fluid 

inlet temperature (Tfi ) and output was heat transfer rate (Q).  

Input values are presented to the ANN with the configuration 

file. Neural network requires that the range of the both input 

and output values should be between 0 and 1. All the data used 

in this study as training or test data are normalized in order to 

have the values. Normalization is done due to the range 

difference of the different inputs in an ANN model. A change 

of 0.5 is 100% change for an input where as a change by 0.5 is 

only a change of 0.05% for another input. With the 

normalization of all the inputs are at a comparable range. 

Normalization (or scaling) is one of the main parts of ANN 

learning process. If the inputs are not normalized between (0,1) 

then equally distribution importance of each input cannot be 

done,  thus naturally  large values become dominant according 

to less values during ANN training.   Normalization is done 

with the following formula; 

 

LowestLowestHighest
MinimumMaximum

MinimumeActualvalu
+−

−

−
)(*        (1) 

 

Here minimum and maximum values are real tested data, 

highest and lowest values are normalized data for minimum and 

maximum tested values, respectively. After the ANN model is 

applied and the prediction is done, to take back the 

normalization and find the actual prediction heat transfer rate, 

following formula is used; 
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−
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Pr        (2) 

 

Various ANN models with various numbers of hidden layers, 

validations, number of hidden neurons per layer and two 

different type of partitioning are tried to develop the best model 

of ANN for the prediction of the heat transfer rate with 

minimum error.  

 

 

 



    

Table 1. Inputs and output of first experimental data set used for training and testing ANN 

 

Test No A D tf NC L Va Vf Tai Tfi Q 

 m2 mm mm - mm m3/h m3/h C° C° kW 

Test0 16.62 12 0.15 6 715 1765.25 4 20 40 7.46 

Test1 16.62 12 0.15 6 715 2647.87 4 20 40 9.42 

Test2 16.62 12 0.15 6 715 3089.19 4 20 40 10.19 

Test3 16.62 12 0.15 6 715 3530.5 4 20 40 10.98 

Test4 16.62 12 0.15 6 715 3971.81 4 20 40 11.7 

Test5 16.62 12 0.15 6 715 4413.12 4 20 40 12.37 

Test6 17.28 9.525 0.15 6 715 1765.25 4 20 40 7.26 

Test7 17.28 9.525 0.15 6 715 2647.87 4 20 40 9.08 

Test8 17.28 9.525 0.15 6 715 3089.19 4 20 40 9.96 

Test9 17.28 9.525 0.15 6 715 3530.5 4 20 40 10.69 

Test10 17.28 9.525 0.15 6 715 3971.81 4 20 40 11.37 

Test11 17.28 9.525 0.15 6 715 4413.12 4 20 40 11.92 

Test12 24.53 12 0.12 6 715 1765.25 4 20 40 7.7 

Test13 24.53 12 0.12 6 715 2647.87 4 20 40 9.54 

Test14 24.53 12 0.12 6 715 3089.19 4 20 40 10.39 

Test15 24.53 12 0.12 6 715 3530.5 4 20 40 11.09 

Test16 24.53 12 0.12 6 715 3971.81 4 20 40 11.77 

Test17 24.53 12 0.12 6 715 4413.12 4 20 40 12.35 

 

 

 

Table 2. Inputs and output of second calculated data set used for testing ANN 

 

 

Test No A D tf NC L Va Vf Tai Tfi Q 

 m2 mm mm - mm m3/h m3/h C° C° kW 

Test 18 27.45 12 0.12 6 800 1765.25 4 20 40 7.9 

Test 19 30.88 12 0.12 6 900 1765.25 4 20 40 8.2 

Test 20 34.31 12 0.12 6 1000 1765.25 4 20 40 8.4 

Test 21 37.74 12 0.12 6 1100 1765.25 4 20 40 8.6 

Test 22 41.17 12 0.12 6 1200 1765.25 4 20 40 8.7 

Test 23 44.6 12 0.12 6 1300 1765.25 4 20 40 8.9 

Test 24 48.03 12 0.12 6 1400 1765.25 4 20 40 9 

Test 25 51.47 12 0.12 6 1500 1765.25 4 20 40 9.1 

Test 26 54.9 12 0.12 6 1600 1765.25 4 20 40 9.3 

Test 27 58.33 12 0.12 6 1700 1765.25 4 20 40 9.4 

Test 28 61.76 12 0.12 6 1800 1765.25 4 20 40 9.5 

Test 29 65.19 12 0.12 6 1900 1765.25 4 20 40 9.5 

Test 30 68.62 12 0.12 6 2000 1765.25 4 20 40 9.6 

Test 31 72.05 12 0.12 6 2100 1765.25 4 20 40 9.7 

Test 32 75.48 12 0.12 6 2200 1765.25 4 20 40 9.8 

Test 33 78.91 12 0.12 6 2300 1765.25 4 20 40 9.8 

Test 34 82.34 12 0.12 6 2400 1765.25 4 20 40 9.9 

Test 35 85.78 12 0.12 6 2500 1765.25 4 20 40 9.9 

 

 



    

Table 3. Inputs and output of third calculated data set used for testing ANN 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test No A D tf NC L Va Vf Tai Tfi Q 

 m2 mm mm - mm m3/h m3/h C° C° kW 

           

Test 36 24.53 12 0.12 6 715 4900 4 20 40 14 

Test 37 24.53 12 0.12 6 715 5300 4 20 40 14.5 

Test 38 24.53 12 0.12 6 715 5700 4 20 40 15.1 

Test 39 24.53 12 0.12 6 715 6100 4 20 40 15.6 

Test 40 24.53 12 0.12 6 715 6500 4 20 40 16 

RESULTS  

 
In this study heat transfer rate is predicted by the help of the 

developed multilayer perceptron ANNs model. To analyse 

which configuration has the lowest deviation, different types of 

configurations were tried for the first data set by changing the 

number of hidden layers and the number of hidden neurons per 

layer.    

 

Table 4. ANN deviations of different configurations 

Configuration 

Mean  

Absolute Error 

Mean  

Squared Error 

Root Mean  

Squared Deviation 

9-2-1 0.0421 0.0033 0.0572 

9-3-1 0.0676 0.0073 0.0856 

9-4-1 0.0294 0.0014 0.0371 

9-5-1 0.0835 0.0177 0.1330 

9-6-1 0.0467 0.0031 0.0555 

9-7-1 0.0680 0.0084 0.0915 

9-8-1 0.0574 0.0066 0.0810 

9-2-2-1 0.0298 0.0015 0.0390 

9-3-3-1 0.0576 0.0083 0.0914 

9-4-4-1 0.0778 0.0200 0.1414 

9-5-5-1 0.0489 0.0044 0.0666 

9-6-6-1 0.0367 0.0025 0.0501 

9-7-7-1 0.0296 0.0014 0.0375 

9-2-2-2-1 0.1053 0.0192 0.1386 

9-3-3-3-1 0.0520 0.0050 0.0706 

9-4-4-4-1 0.0691 0.0126 0.1123 

9-5-5-5-1 0.0855 0.0214 0.1462 

9-6-6-6-1 0.0432 0.0029 0.0539 

9-7-7-7-1 0.0334 0.0019 0.0433 

9-8-8-8-1 0.0321 0.0014 0.0370 

 

As can be seen in Table 4, the most reasonable error is taken 

with the configuration 9-4-1 (one hidden layer and 4 nodes at 

the hidden layer). Therefore, next predictions are done with this 

configuration. 

 

 

 

 

 

First group is consisting of 18 heat exchanger production 

and test parameters. Data set separated into two groups and 

14 data are used for training the ANN model and the rest 4 

data are used for testing the model. (Table 1)  
 

 
Figure 4. Heat transfer rate of training results evaluated 

experimentally and using ANNs model for the first data set 
 

Figure 4 shows the results of training data for the first data 

set. Mean relative error is 2.4% and maximum relative error 

is 5.2% for first training data set. 

 

Table 5 shows the heat transfer rate comparison of 

experimental and ANN model results for the first data set 

ANN testing group. Mean relative error is 0.7% for first 

data set and maximum relative error is 1.2% for the ANN 

testing data in first data set.  

 

Table 5. Heat transfer rate of ANN testing results 

comparison evaluated experimentally and using ANNs 

model for the first data set 

Test No 

Q (kW) 

(Experimental 

Results) 

Q (kW) (ANN 

Model 

Results) 

% RE (Relative 

Error) 

Test6 7.26 7.35 1.19 

Test8 9.96 9.95 -0.06 

Test10 11.37 11.33 -0.35 

Test16 11.77 11.64 -1.09 

 



    

 

 
 

Figure 5. Heat transfer rate of ANN testing results evaluated 

experimentally and using ANNs model for the first data set 

 
Another data set is used to see what the accuracy of the ANN 

model will be if the new data inputs, which are out of the range 

of the first data set inputs, are introduced to the ANN model. 

Second and third data set were generated by the help of a 

mathematical model which’s performance were proved by an 

accredited institution. Every new data added to the first data set 

one by one. The coil fin lengths are changed from 800 mm to 

2500 mm and correspondingly the heat transfer surface area is 

changing. (Table 2)  

 

 
Figure 6. Heat transfer rate of results calculated with mathematical 

model and using ANNs model for the second data set 

 

Figure 6 shows the results of test data for the second data set. 

Mean relative error for 18 data is 5.7% and maximum relative 

error is 13.8% for the second data set. Thus, it can be said that 

the developed ANN model is valid even if the fin length is 

changed out of the range of training data. 

 

 

 Table 6. Heat transfer rate of results comparison evaluated 

with mathematical model and using ANNs model with added 

second data set 
 

Test No 

Q (kW) 

(Mathematic Model 

Results) 

Q (kW) (ANN 

Model Results) 

% RE 

(Relative 

Error) 

Test 18 7.9 7.7 -2.4% 

Test 19 8.2 8.0 -2.0% 

Test 20 8.4 7.9 -6.3% 

Test 21 8.6 8.4 -2.5% 

Test 22 8.7 8.3 -4.6% 

Test 23 8.9 8.4 -5.2% 

Test 24 9 8.2 -8.9% 

Test 25 9.1 8.8 -3.3% 

Test 26 9.3 9.6 3.1% 

Test 27 9.4 9.1 -2.7% 

Test 28 9.5 8.8 -7.1% 

Test 29 9.5 8.2 -13.8% 

Test 30 9.6 9.2 -3.8% 

Test 31 9.7 8.9 -8.7% 

Test 32 9.8 9.0 -7.7% 

Test 33 9.8 10.0 1.9% 

Test 34 9.9 9.1 -7.8% 

Test 35 9.9 8.8 -10.9% 

 

 

 

 

Finally, another new data set is introduced to the ANN model 

with the first data set. (Table 3) Again every data added to the 

first data set one by one. Changing data for this group was air 

side volumetric flow rate from 4900 m3/h to 6500 m3/ h. 5 

different air side volumetric flow rate is added to the first 18 

data and examined how the accuracy of the ANN model is 

changing. 

 

Figure 7 shows the results of test data for the third data set. 

Mean relative error for 5 data is 12.7% and maximum relative 

error is 17.3% for the third data set. Results shows developed 

ANN model is valid even if the air volumetric flow rate is 

changed out of the range of training data. 

 

 



    

 
 

Figure 7. Heat transfer rate of results calculated with mathematical 

model and using ANNs model for the third data set 

 

 

Table 7.   Heat transfer rate of results comparison evaluated 

with mathematical model and using ANNs model with third 

data set 

Test No 
q (kW) (Mathematic  

Model Results) 

q (kW) (ANN  

Model Results) 

% RE 

(Relative 

Error) 

Test 36 14.0 12.8       -8.9% 

Test 37 14.5 13.0       -10.3% 

Test 38 15.1 13.2       -12.3% 

Test 39 15.6 13.3       -14.7% 

Test 40 16.0 13.2       -17.3% 

 

CONCLUSION  
 

In the present study, multilayer perceptron artificial neural 

network approach is applied to predict the heat transfer rate for 

fin and tube type heat exchangers that has been widely used in 

refrigeration systems. First part of the study was focused on the 

optimum configuration for the ANN model. After the decision 

of the configuration, ANN model trained and tested for three 

other data sets. First group data inputs were experimentally 

tested 18 coil parameters and the results of the neural network 

agree with the experimental results. Second and third data set 

inputs were calculated by the help of a mathematical model. 

For the second data set which the fin lengths are changed, 

results were achieved with an MRE 5.7% and for the third data 

set which the air volumetric flows are changed, results were 

achieved with a MRE 12.7%. It can be said that the predicted 

values with ANN models are admissible when the training data 

and the tested data are in a limited range.  

If the estimation is made with an input other than the limit of 

the inputs of the training set, the error rates of the results were 

increased. Error rates are changing according to the effect of 

the input to the predicted data. Although further study is 

required it could also be concluded that the variations in 

geometrical characteristics results with less deviations when 

compared with the variation in flow characteristics case. 

REFERENCES 
 

[1] D. V. Singh, “Modeling of Artificial Neural Network 

for Predicting Specific Heat Capacity of Working Fluid 

LiBr-H2O Used in Vapor Absorption Refrigeration 

System,” International Journal of Online Engineering, 

pp. 54–56. 

[2] G. E. Nasr, E. A. Badr, and C. Joun, “Backpropagation 

neural networks for modeling gasoline consumption,” 

Energy Conversion and Management, vol. 44, pp. 893–

905, 2003. 

[3] S. Danaher, S. Datta, I. Waddle, and P. Hackney, 

“Erosion modelling using Bayesian regulated artificial 

neural networks,” Wear, vol. 256, pp. 879–888, 2004. 

[4] K. S. Yigit and H. M. Ertunc, “Prediction of the air 

temperature and humidity at the outlet of a cooling coil 

using neural networks ☆,”International 

Communications in Heat and Mass Transfer, vol. 33, 

pp. 898–907, 2006. 

[5] Y. Islamoglu and A. Kurt, “Heat transfer analysis using 

ANNs with experimental data for air flowing in 

corrugated channels,” Int. J. Heat Mass Transf., vol. 

47, pp. 1361–1365, 2004. 

[6] Y. Islamoglu, “Short Communication A new approach 

for the prediction of the heat transfer rate of the wire-

on-tube type heat exchanger –– use of an artificial 

neural network model,” Applied Thermal Engineering, 

vol. 23, pp. 243–249, 2003. 

[7] G. Díaz, K. T. Yang, and D. Ph, “Simulation of Heat 

Exchanger Performance by Artificial Neural 

Networks,” HVAC&R Research, pp. 195–208, 1999. 

[8] A. Pacheco-vega, M. Sen, K. T. Yang, and R. L. 

Mcclain, “Neural network analysis of ® n-tube 

refrigerating heat exchanger with limited experimental 

data,” Int. J. Heat Mass Transf., vol. 44, pp. 763–770, 

2001. 

[9] A. Okbaz, A. Pınarbaşı, A. B. Olcay, and M. Hilmi 

Aksoy, “An experimental, computational and flow 

visualization study on the air-side thermal and 

hydraulic performance of louvered fin and round tube 

heat exchangers,” Int. J. Heat Mass Transf., vol. 121, 

pp. 153-169, 2018. 

[10] V. Piuri, and C. Alippi, “Artificial neural networks,” 

Journal of System Architecture, 44: 565-567,1998. 

[11]  S. Haykin, “Neural Networks, ” A Comprehensive     

Foundation, Second ed., Prentice-Hall, Upper Saddle 

River, 1999. 

 

 

 


